Welcome

April 16, 2012 5 comments

Welcome to the Spatial Reserves blog.

The GIS Guide to Public Domain Data was written to provide GIS practitioners and instructors with the essential skills to find, acquire, format, and analyze public domain spatial data. Some of the themes discussed in the book include open data access and spatial law, the importance of metadata, the fee vs. free debate, data and national security, the efficacy of spatial data infrastructures, the impact of cloud computing and the emergence of the GIS-as-a-Service (GaaS) business model. Recent technological innovations have radically altered how both data users and data providers work with spatial information to help address a diverse range of social, economic and environmental issues.

This blog was established to follow up on some of these themes, promote a discussion of the issues raised, and host a copy of the exercises that accompany the book.  This story map provides a brief description of the exercises.

The Montana Digital Atlas

December 4, 2016 Leave a comment

We wrote extensive reviews of local, regional, state, provincial, national, and international government data portals in our book and from time to time do so in this blog.  One of the finest state geospatial data portals in our judgment is the Montana Digital Atlas.

We have been critical here and in our book about data portals that were obviously set up simply to satisfy some organizational mandate without regard to those who will actually use the data portal.  I have spent time with the MAGIP (Montana Association of Geographic Information Professionals) community, and most recently was honored to give the keynote at their annual conference.  I am happy to report that they have built their data portal with the end user in mind.  What’s more, the Montana State Library has been a leader in the GIS community there for years, and I have found that when library information professionals are involved–people who really understand data–their resources will be extensive, the metadata will be rich, and the services are actually going to work.

The Digital Atlas features geographic databases, aerial photos, and topographic maps of lands in Montana.  The functions begin with an interactive map, where you can select base maps, thematic map layers, and tabular data from which you can draw on the screen, generate reports from in XLS and CSV formats, and download in various GIS formats.  The site features functionality that I wish all data portals had, such as the ability to move popup boxes to locations most convenient for you, choices on datums and projections for your data, the ability to clip data to specific geographic areas, and the ability to search the state library catalogs for articles, books, and other resources for the area you are investigating.  You can even copy the map link to get a web link to the current map that you have created on the site.  Furthermore, you can load some of the layers directly from the Montana State Library to ArcGIS Online, via the services in the ‘MSDI_Framework’ and ‘MSL’ folders, on https://gisservicemt.gov/arcgis/rest/services/MSDI_Framework and https://gisservicemt.gov/arcgis/rest/services/MSL.

Lastly, the portal managers graciously say to contact them at MSLDA @ mt.gov if you experience difficulty with the application, if you see a problem with any of the data, or even–and this is wonderful–to suggest additional map layers.

 

montana-gis

The Montana Digital Atlas.  I have selected dams, wetlands, and riparian zones.  At this point, I can generate reports, download the data, or clip and otherwise modify my data search.

 

Aqua People? Reflections on Data Collection and Quality

November 20, 2016 3 comments

Data quality is a central theme of this blog and our book.  Here, we focus on quality of geospatial information, which is most often in the form of maps.  One of my favorite maps in terms of the richness of information and the choice of symbology is this “simple map of future population growth and decline” from my colleague at Esri, cartographer Jim Herries.  Jim symbolized this map with red points indicating areas that are losing population and green points indicating areas that are gaining population.  This map can be used to learn where population change is occurring, down to the local scale, and, with additional maps and resources, help people understand why it is changing and the implications of growth or decline.

But the map can also be an effective tool to help people understand issues of data collection and data quality.  Pan and zoom the map until you see some rivers, lakes, or reservoirs, such as Littleton Colorado’s Marston Reservoir, shown on the map below. If you zoom in to a larger scale, you will see points of “population” in this and nearby bodies of water. Why are these points shown in certain lakes and rivers?  Do these points represent “aqua people” who live on houseboats or who are perpetually on water skis, or could the points be something else?

water_living_in.jpg

The points are there not because people are living in or on the reservoir, but because the dots are randomly assigned to the statistical area that was used.  In this case, the statistical areas are census tracts or block groups, depending on the scale that is being examined.  The same phenomena can be seen with dot density maps at the county, state, or country level.  And this phenomenon is not confined to population data.  For example, dot density maps showing soybean bushels harvested by county could also be shown in the water, as could the number of cows or pigs, or even soil chemistry from sample boreholes.  In each case, the dots do not represent the actual location where people live, or animals graze, or soil was tested.  They are randomly distributed within the data collection unit.  In this case, at the largest scale, the unit is the census block group, and randomly distributing the points means that some points fall “inside” the water polygons.

Helping your colleagues, clients, students, or some other audience you are working with understand concepts such as these may seem insignificant but is an important part of map and data interpretation.  It can help them to better understand the web maps that we encounter on a daily basis.  It can help people understand issues and phenomena, and better enable them to think critically and spatially.  Issues of data collection, quality, and the geographic unit by which the data was collected–all of these matter.  What other examples could you use from GIS and/or web based maps such as these?

Enhancements to Landsat Thematic Bands Web Mapping Application

November 6, 2016 Leave a comment

Last year, we wrote about the Landsat Thematic Bands Web Mapping Application, an easy-to-use but powerful teaching and research tool and data set. It is a web mapping application with global coverage, with mapping services updated daily with new Landsat 8 scenes and access to selected bands that allows the user to visualize agriculture, rock formations, vegetation health, and more.  The Time tool allows for the examination of changes over years, over seasons, or before and after an event.  The identify tool gives a spectral profile about each scene.  I have used this application dozens of times over the past year in remote sensing, geography, GIS, and other courses and workshops, and judging from the thousands of views that this blog has seen, many others have done the same thing.

If that weren’t all, the development team at Esri has recently made the tool even better–one can now save a time sequence or a band combination as a permanent URL that can be shared with others.  The flooding of 20 districts in August and September 2016 in Uttar Pradesh, India, for example, can be easily seen on this link that uses the application, with screenshots below.

Another example is the Fort McMurray summer 2016 wildfire in Alberta, Canada  – the user can change the time to see the region’s vegetation cover before and after fire, and the extent of the smoke during the fire.  Or, you can analyze a different band combination, as is seen here.

To do this, open the application.  Note that the application URL has been updated from the one we wrote about last year.  Move to an area of interest.  Select any one of the available thematic band renderers (such as agriculture, natural color, color infrared, and others available), or create your own band combination using build.  Then, turn on “time” to see your area of interest at different periods using your band combination.  Next, share this image with other people.   Simply click on any one of the social platforms (Facebook or Twitter) in the upper right, which will create a short link that can be shared.  When the person you send this link to opens it, the Landsat app will open in exactly the same state it was in before social platform tool was clicked.  Give it a try!

landsat8_0

Landsat 8 Image for Allahabad India on 31 May 2016.

landsat8_1

Harmonising UAS Regulations and Standards: Article Review

October 23, 2016 Leave a comment

A recent article in GIM International about harmonising UAS (Unmanned Aerial Systems, or UAVs (Unmanned Aerial Vehicles), or “Drone” technologies) regulations and standards is definitely worth reading, providing an excellent summary of this rapidly evolving sector of the geospatial industry.  The article, beginning on page 6, is in a special issue of GIM International dedicated exclusively to UAS, available here.  Peter van Blyenburgh summarizes developments in regulations and standardization in Europe, the USA, Japan, and China, and then provides some down-to-earth advice for companies who are seeing the potential for profits only but may not see the bigger picture about liability, regulations, and safety.  The GIM issue also includes articles about integrating UAS and multibeam echosounder data, multispectral and thermal sensors on UAVs, UAS applications in agriculture, and the article “Airborne laser scanning” provides an excellent introduction to the two main platforms:  fixed-wing and rotorcraft.

If I am reading the “tea leaves” correctly, in the world of education, just about every GIS program offered at a technical college and university will include at least one course in UAS technology and data by this time next year.  And I would expect that a whole host of online MOOCs and other courses will appear from universities, companies, and GIS organizations to help people effectively use these new tools and technologies.  I attended, for example, a multi-hour course at the recent Geo’Ed community college GIS conference on this topic.  This reinforced my opinion that while online courses and programs will be helpful, the face-to-face component, actually working with the software and hardware, is particularly useful when working with UAS:  There is no perfect substitute for rolling up one’s sleeves and working with these devices.

As publishing director Durk Haarsma states in his editorial for this special issue, UASs are disruptive technologies, because they are influencing so many geospatial fields and subfields, such as cadastral surveying, cultural heritage, and precision agriculture, just to name a few.  Because UAS influence how people in an increasing number of professions map and model the world, interpreting the data from those UAS is central to our book and this blog–understanding your data, and how they are obtained, is more critical than ever.

uaslaunch

Launching a fixed wing UAV at the Geo’Ed conference, Louisville Technical College, Kentucky. Photograph by Joseph Kerski.  Video here and analyzing thermal imagery here.

New Alaska Elevation Data Now Available

October 9, 2016 Leave a comment

Exciting news from the Arctic! Version 2 of the Arctic DEM has been released. Topographic elevation of the Arctic can now be viewed and analyzed like never before. This release extends the detailed 2 meter Alaska elevation data with additional 2m data for Novaya Zemlya and Franz Josef Land, as well as preliminary 8 meter data for the entire Arctic.  Additional detailed 2 meter elevation data will be released in quarterly installments over 2017 until the arctic data is complete.  This is the result of a partnership between Esri, the National Geospatial Intelligence Agency, the National Science Foundation, and the Polar Geospatial Center at the University of Minnesota.

In September 2016, the US at the White House hosted an Arctic Ministerial meeting, with over 20 countries represented, where this data was showcased and new commitments on data provisions were sought. The goal of the meeting and the new data is to help people better understand, adapt to, and address the changing conditions in the Arctic.

The four key themes include:

  • Understanding Arctic-Science Challenges and their Regional and Global Implications.
  • Strengthening and Integrating Arctic Observations and Data Sharing.
  • Applying Expanded Scientific Understanding of the Arctic to Build Regional Resilience and Shape Global Responses.
  • Using Arctic Science as a Vehicle for Science, Technology, Engineering, and Math (STEM) Education and Citizen Empowerment.

To access the data, start  with the NGA Arctic Support story map here and spend time on the ‘Arctic Digital Elevation Model (ArcticDEM) ’ tab.  The embedded apps provide interactive access to the elevation. The data is described in an article here from Medium.com and an article from National Geographic here.  This story map illustrates the visualizations that can be generated with the click of the mouse for any user selected area, and a swipe story map explains the background on Digital Elevation Models and compares the new elevation data to the older elevation data by providing the ability to swipe between the maps. The DEMs have been computed from high resolution stereo Digital Globe satellite imagery.

The DEM Explorer is a web app that allows the data user to zoom to any area and review different visualizations such as hillshade, slope, aspect, contours. As the data is temporal in many areas, users can see how the data is changing over time and summarize elevation change for a selected areas.  The Change Viewer is a simpler app that allows a user to click a point and graphically view the historical elevation of that location. Access to these services is also available in a wide range of applications through the Arctic DEM Group in ArcGIS Online.   Most of the apps use the polar projections to reduce distortions which would become severe in generic mapping applications.  Finally, a video tour of the story map highlights many of the above products and services.

The actual data are available–not just press releases, and the data will be of great benefit for anyone doing research in the Arctic, as the map below should make very clear.

ak_data.JPG

Alaska DEMs showing the heretofore available data (left) and the new data (right).

Public Domain Data Resources Page from Esri Press

October 3, 2016 Leave a comment

Esri Press have now published a new resources page to compliment The GIS Guide to Public Domain Data, cataloguing a list of blog posts from Spatial Reserves that update and augment many of the themes discussed in the book.

sr_resources

The resources site also provides information on accessing the hands-on exercises that accompany the book. The exercises provide an opportunity for novice and experienced data users alike to work through some of the issues discussed in the book.

 

Connections between Geospatial Data and Becoming a Data Professional

September 25, 2016 Leave a comment

Dr. Dawn Wright, Chief Scientist at Esri, recently shared a presentation she gave on the topic of “A Geospatial Industry Perspective on Becoming a Data Professional.”

How can GIS and Big Data be conceptualized and applied to solve problems?  How can the way we define and train data professionals move the integration of Big Data and GIS simultaneously forward?  How can GIS as a system and GIS as a science be brought together to meet the challenges we face as a global community?   What is the difference between a classic GIS researcher and a modern GIS researcher?   How and why must GIS become part of open science?

These issues and more are examined in the slides and the thought-provoking text underneath each slide.  Geographic Information Science has long welcomed strong collaborations among computer scientists, information scientists, and other Earth scientists to solve complex scientific questions, and therefore parallels the emergence as well as the acceptance of “data science.”

But the researchers and developers in “data science” need to be encouraged and recruited from somewhere, and once they have arrived, they need to blaze a lifelong learning pathway.  Therefore, germane to any discussion on emerging fields such as data science is how students are educated, trained, and recruited–here, as data professionals within the geospatial industry.  Such discussion needs to include certification, solving problems, critical thinking, and ascribing to codes of ethics.

I submit that the integration of GIS and open science not only will be enriched by the immersion of issues that we bring up in this blog and in our book, but is actually dependent in large part on researchers and developers who understand such issues and can put them into practice.  What issues?  Issues of understanding geospatial data and knowing how to apply it to real-world problems, of scale, or data quality, of crowdsourcing, of data standards and portals, and others that we frequently raise here.  Nurturing these skills and abilities in geospatial professionals is a key way of helping GIS become a key part of data science, and our ability to move GIS from being a “niche” technology or perspective to one that all data scientists use and share.

data_professional.PNG

This presentation by Dr. Dawn Wright touches on the themes of data and this blog from a professional development perspective.