Archive

Posts Tagged ‘UAS’

Harmonising UAS Regulations and Standards: Article Review

October 23, 2016 Leave a comment

A recent article in GIM International about harmonising UAS (Unmanned Aerial Systems, or UAVs (Unmanned Aerial Vehicles), or “Drone” technologies) regulations and standards is definitely worth reading, providing an excellent summary of this rapidly evolving sector of the geospatial industry.  The article, beginning on page 6, is in a special issue of GIM International dedicated exclusively to UAS, available here.  Peter van Blyenburgh summarizes developments in regulations and standardization in Europe, the USA, Japan, and China, and then provides some down-to-earth advice for companies who are seeing the potential for profits only but may not see the bigger picture about liability, regulations, and safety.  The GIM issue also includes articles about integrating UAS and multibeam echosounder data, multispectral and thermal sensors on UAVs, UAS applications in agriculture, and the article “Airborne laser scanning” provides an excellent introduction to the two main platforms:  fixed-wing and rotorcraft.

If I am reading the “tea leaves” correctly, in the world of education, just about every GIS program offered at a technical college and university will include at least one course in UAS technology and data by this time next year.  And I would expect that a whole host of online MOOCs and other courses will appear from universities, companies, and GIS organizations to help people effectively use these new tools and technologies.  I attended, for example, a multi-hour course at the recent Geo’Ed community college GIS conference on this topic.  This reinforced my opinion that while online courses and programs will be helpful, the face-to-face component, actually working with the software and hardware, is particularly useful when working with UAS:  There is no perfect substitute for rolling up one’s sleeves and working with these devices.

As publishing director Durk Haarsma states in his editorial for this special issue, UASs are disruptive technologies, because they are influencing so many geospatial fields and subfields, such as cadastral surveying, cultural heritage, and precision agriculture, just to name a few.  Because UAS influence how people in an increasing number of professions map and model the world, interpreting the data from those UAS is central to our book and this blog–understanding your data, and how they are obtained, is more critical than ever.

uaslaunch

Launching a fixed wing UAV at the Geo’Ed conference, Louisville Technical College, Kentucky. Photograph by Joseph Kerski.  Video here and analyzing thermal imagery here.

UAV/UAS: The next influx of spatial data

September 9, 2013 8 comments

UAVs or UAS (unmanned aerial vehicles or unmanned aerial systems) are a hot topic this year. We have already discussed some of the privacy concerns in an earlier post, and for many, privacy will be the first thing that comes to mind when UAS are mentioned. However, for all the concerns, the increasing adoption of UAVs for capturing aerial imagery is heralding what Mike Tully described in his article for Sensors & Systems, The Rise of the [Geospatial] Machines: The Future with Unmanned Aerial Systems (UAS), as a ‘…..technological earthquake’. Although Tully’s prediction of Jetsonian skies cluttered with remotely operated UAS raises some other concerns, his description of a UAS-borne pizza delivery made me think how much better life could be for those of us who live just outside the current fast-food delivery area.

Pizzas aside, perhaps the most important change that’s coming with UAS is the deluge of information that’s soon to be available to mapping companies and geospatial professionals. Recent technical innovations in UAS design, computing power, data capture techniques and processing software have demonstrated that bulky and expensive sensors (such as manned aircraft) are no longer required to produce high-quality spatial data. Imagery from an increasingly extensive network of light-weight and affordable UAS equipped with cameras, will be continuously relayed to mapping service providers at a fraction of the cost.

Base maps previously updated on an annual or quarterly basis will be updated in a matter of hours, turning the once static background “wallpaper” into what Tully describes as an “operational layer”. This will provide end-users with up-to-date and high-resolution data and become an invaluable resource for those responding to emergency situations who were previously reliant on out-of-date and expensive mapping products. Although crowdsourced local information has helped in these situations, the quality of the data can be variable and in some cases proved too unreliable to be of any benefit.

To make optimum use of this new influx of data, new processes and analytical tools will be required to deal with both the volume and resolution of the data. Just when the dust seemed to be settling after the geospatial cloud revolution, it seems another upheaval is on the way.