Home > Public Domain Data > Verifying location data with blockchain cryptography

Verifying location data with blockchain cryptography

Following on from Joseph’s recent post on some of the issues associated with the plethora of image resources we now have access to, another interesting aspect of verifying those data sources relates to the basic premise of proof. How can a data provider, whether that’s an individual or global company, prove the data they collect and publish are an authoritative and accurate representation of the locations they seek to record? The problems associated with Geolocation and GPS Spoofing are not new, with many protocols and procedures now in place to help prevent this type of deception. Conversely, GPS simulators are generally available, making it relatively easy for location hackers to interfere with GPS signals.

So how do data providers prove entities, in both the physical and human-made environments, really do exist at a particular location? One company, XYO, has been working on an alternative to satellite networks as a source of verified location information – the XYO Network. By augmenting our increasingly interconnected network of digital devices with location tracking technologies that incorporate blockchain cryptography, these co-opted devices (acting as sentinels or bridges) can be configured to recognise, validate and confirm the location of each other. As each device acts as a witness to the location of other devices; the more witnesses there are confirming a device’s location, the less chance there is that location is incorrect. The end result is a decentralised location data network that is arguably at less risk of being compromised.

Bound witnesses (sentinel and bridge devices) in San Francisco – https://matrix.xyo.network/map

Using device networks in this manner is an interesting new development in evolution of geospatial data and an emerging technology to watch.

 

Leave a comment